Relating the surface properties of intraocular lens materials to endothelial cell adhesion damage.

نویسندگان

  • N B Mateo
  • B D Ratner
چکیده

Relationships between corneal endothelial cell adhesion and intraocular lens (IOL) surface properties were studied to develop a lens surface with a lower potential to damage the corneal endothelium. The surfaces examined were poly(methyl methacrylate) (PMMA) and four types of plasma-deposited coatings on PMMA. These four films were prepared from perfluoropropane, ethylene oxide, 2-hydroxyethyl methacrylate (HEMA), and N-vinyl-2-pyrrolidone (NVP). These "monomers" were chosen to produce surfaces with a range in surface chemistry and surface energy. Each type of coating was characterized by electron spectroscopy for chemical analysis (ESCA) and contact angle techniques. In addition, these surfaces were contacted with rabbit corneal endothelium over a force range of 4000-20,000 dynes. The extent of endothelial cell damage was measured. Over the force range investigated, each modified surface was found to induce a significantly different degree of cell adhesion than that caused by PMMA. The perfluoropropane plasma film induced a constant lower degree of adhesion damage than the PMMA for all forces of contact. Although the HEMA and NVP hydrogel surfaces also induced lower adhesion damage than PMMA, the cell loss associated with each did increase as a function of force. The ethylene oxide film caused a significant increase in cell loss compared to the PMMA-induced losses. Based upon the correlation between the surface analysis data and the cell-surface contacting results, we suggest that a "soft" high-energy surface or a "rigid" low-energy surface is favorable for reduced cell adhesion. Also, the results indicate that cell adhesion increases for materials with increased hydrocarbon enrichment and for materials with lower (ether bonding)/(ester and ketone linkages) ratios.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endothelial damage from intraocular lens insertion.

Previous studies have shown that approximately 40 per cent of the corneal endothelial cells can be lost at the time of intraocular lens insertion. Momentary contact between the methacrylate surface and the endothelial cells causes an adhesion between these surfaces and results in extensive cell damage upon separation of the surfaces. This type of damage appears to be due to a biophysical intera...

متن کامل

A new technique for the vital staining of the corneal endothelium

tion and irrigation of the anterior chamber, and although lens design with surface protuberances may be of some importance, it is clear that a biophysical interaction between methacrylate and the corneal endothelial surface produces extensive cell damage. It appears that the methacrylate adheres instantaneously to the endothelial surface, and with separation of the two surfaces the anterior mem...

متن کامل

Radiation-induced expression of platelet endothelial cell adhesion molecule-1 in cerebral endothelial cells

Background: Radiation-induced molecular changes on the endothelial surface of brain arteriovenous malformations (AVM) may be used as markers for specific vascular targeting agents. In this study, we examined the level of expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) on brain endothelial cell surface after radiation treatment, with the aim of targeting the radiation-induc...

متن کامل

The Study of Collagen Immobilization on a Novel Nanocomposite to Enhance Cell Adhesion and Growth

Background: Surface properties of a biomaterial could be critical in determining biomaterial’s biocompatibility due to the fact that the first interactions between the biological environment and artificial materials are most likely occurred at material’s surface. In this study, the surface properties of a new nanocomposite (NC) polymeric material were modified by combining plasma treatment and...

متن کامل

Biointerface multiparametric study of intraocular lens acrylic materials.

PURPOSE To compare hydrophilic and hydrophobic acrylic materials designed for intraocular lenses in a multiparametric investigation in a liquid environment to highlight their properties in terms of adhesion forces, lens epithelial cell (LEC) adhesion, and tissue response as indicators of the risk for posterior capsule opacification (PCO) development. SETTING University of Liège, Liège, Belgiu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 30 5  شماره 

صفحات  -

تاریخ انتشار 1989